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AN ANALYSIS OF MARKETS WITH A LARGE
NUMBER OF PARTICIPANTSE/
by
" Herbert Scarf

1. .Introduction

The concept of a contract curve (or contract surface in the general
case) was introduced by Edgeworth in 1881 {7] to describe the possible
allocations of commodities in an economic situation in which the number
of participants is insufficient to warrant the assumption of competitive
prices. Since that time the idea of a contract surface has appeared in
economic literature, frequently accompanied by the statement that as the
number of participants becomes large the contract surface becomes smaller
and approaches the competitive allocation in the limit.g/ Edgeworth is
specific on this point in the analysis given in Mathemntical Psychics,
which contains a geometrical proof of this result for the case involving
two commodities. Aside from the fact that the proof is described primerily
in geometrical terms so that there is at least a possibility that the
argument is not general, the step from two commodities to an arbitrary
nurter of commodities is a fairly large one, requiring arguments of a
different type than those presented by Edgeworth.

The only other examples that I am aware of, to formulate and demon-
strate tnis result, are to be found in a paper of Shubik [11) and in some

recent work of Shubik and Shapley which will be published shortly.

l/ The problem discussed in this paper was formulated in a conversation
with Lloyd Shapley and Martin Shubik. I have also benefited greatly
from subsequent talks with Kenneth J. Arrow, Gerard Debreu, Abba Lerner
and Marc Nerlove.

2/ See [12], p. 81 for a typical statement of this "proposition.”



In this present work the analysis of markets is carried out using the

techniques and the point ol view of n-person game theory. Markets are
examined as n-person games with the specific assumption of transferable
utility and making use of several of the available concepts of solution
of an n-person game.l/ One of these concepts, the "core," (due to Gillies)
corresponds very closely to what Edgeworth and subsequent economists
mean by the contract surface. In fact, as was pointed out to me by
Shapley and Shubik, once the notion of transferable utility is dropped,
the core corresponds precisely to what is meant by the contract surface.g/
In order to see this correspondence more clearly, let us introduce
the formal notation and definitions which will be the basis of the
subsequent discussion. We consider a market composed of N individuals
(1, 2, ... , N), each with a specific set of preferences for commodity
bundles consisting of m commodities. We shall denote the typical

commodity bundle by the vector x = (X,, oo , xm) with the x, Dbeing

1’ i

non-negative numbers; the preference ordering of the 1th consumer
will be denoted by the customary symbol > . The interpretation of
i

x >y 1s, of course, that the ith consumer either prefers x to y
i
or is indifferent to the choige. If x >y and y >x then the commod-
i i
ity bundles x and y are indifferent. A number of assumptions that

Y

Reference should also be made to several papers of Shapley [8,9] in
which finite market games are analyzed.

/
% Most work in n-person game theory has been formulated in terms of

transferable utility, which is unfortunately a concept quite foreign
to current economic thinking. Some recent work, however, has been
done on a version of n-person game theory which involves no side
payments in utilities {3, 4, 10].



are quite familiar will b2 placed on the various preference orderings.
(For a more complete discussion the reader may wish to consult [6].)

1. The preference ordering for each consumer is reflexive,
transitive, and complete; i.e., x >x and if x >y and y >z, then
x > 2, and for any two commodity bindles x and iy, either ix >y
or1 Yy 2 x.

i

2. The ordering is continuous, i.e., for any y the set of
commodity bundles preferred or indirferent to y 1is a closed set, and
similarly for the set of commodity bundles which are indifferent to y
or not preferred to y.

3. The preferences are convex, in the sense that for any fixed Yy,
the commodity bundles preferred or indifferent to y, form a convex set.

L, The preferences are monotone. If all of the componenis of the
commodity bundle y are greater than or equal to the corresponding
components of x, then y > x. We shall also assume that if all of the
components of x are positive, then x > (0, ... , 0). Also let y be
any commodity bundle which is strictly pzi~eferred to (0, .o. , 0). Ve
shall assume that for any a > 1, ay > y.

In our analysis we shall focus oir attention on the exchange aspects
of the economy, that is to say no production will be considered. The
analogue of our main result is correct when production is also included.
The economic meaning, however, of coalition formation in the case in
which production is included seems to me to be considerably more subtle
than in the case of pure trade, and I would like to defer the discussion
of this case for a subsequent paper.

In the present discussion consumers will be equipped only with

specific initial holdings which they are interested in exchanging for
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commodity bundles of higher utility. T.ue initial holdings of individual
i will be denoted by the vector Ii = (Ii, cee I;). It will bve
convenient to assume that every consumer holds a positive quantity of
each item. Occasionally we shall find it useful to refer to the total
initial holdings of all of the consumers in a particular set of consumers,
and for this we shall use the notation I(S) to indicate the vector
obtained by summing the vectors Ii over &ll members of the set of
consumers S. The entire set of consumers will be denoted by X, so
that I(X) refers to the total supply available in the market.

We are now in a position to describe what is meant by the core or
equivalently, the contract surface. In an informal way, the core may
be described as the collection of all allocaticas of the total market
supply which cannot be improved upon by any subgroup of the consumers
on the basis of their own initial holdings. Let us be somewhat more
formal a.out this definition. We consider allocations of the total

market supply to the various consumers:

xl + x2 + eee 4 iy = I(X) ,

with the commodity bundle xi designated for the ith consumer. Let

S be any subset of the total collection of consumers (on the one extreme
S may consist of a single consumer, and on the other extreme S may be
taken as the entire set of consumers.) We shall say that the allocation
xl, coe xN is blocked by the set S if there is some way of allocating
the total holdings I(S) into commodity bundles yj, with

I1(8) = z y'j , and yJ > xJ ,
J€S J

for all j in S .



The set of those allocations which are not blocked by any subset S will
be defined to be the core of the market, or the contract surface.

One immediate consequence of the definition is that every allocation
in the core is & Pareto optimum allocation. (This is a slightly weaker
definition of Paretc optimality than the one customarily given in which
strict preference is required for only one individual.) We see this by
taking the blocking set S +to be the entire set of consumers. On the
other hand there will be muny allocations which are Pareto optimum and
not in the core. An allocation may very well be Pareto optimum and yet
assign to an individual consumer a commodity bundle which is worth less
to him than his initial holdings. 1In this event the coalition consisting
of this consumer himself would be sufficient to block the allocation.
Even more generslly, allocations which are Pareto optimum and assign to
each consumer a commodity bundle preferred to his initial holding, may
still be blocked by a coalition of several consumers.

If the number of participants in the market is large, there will be
many coalitions which may possibly be available to block a given allocation.
In some sense, the number of allocations in the core should therefore be
reic ively small. As we shall see in section 3, however, the dependence
of the size of the core on the number of participants in the market is by
no means simple to analyze.

There are always some allocations in the core - the competitive
allocations. Suppcse that at prices ﬂl 3 eee “m’ xJ is a commodity
bundle which maximizes the preferences of the Jth consumer subject to the
budget constraint (w,y) < (ﬂ,IJ). Suppose in addition that wxd = 1(X),

the sum taken over all consumers in the market. (It may be seen, by



adding the budget constraints, that in this case (ﬂ,xJ) = (n,IJ).) Such
a competitive allocation can never be blocked by a coalition S, as the
following argument, communicated to me by Shapley, will demonstrate.

Suppose that it were possible to find y‘j such that

T v = 1(s) and y > xd,
jes J
forall J in S.

J

But then we must have (n,yJ) > (n,IJ), for otherwise x* would not

maximize preference subject to the budget constraint. Therefore

(0,1(5)) = [ (m,y) > [ (n,xd) = (z,2(8)) ,
Jes Jes
which contradicts the assumption that the competitive allocation is
blocked.

We know that under exceptionally general conditions [6] at least
one competitive allocation will always exist. Since we have reason to
suspect that for a large number of participants the core will be fairly
small, it seems at least reasonable that the result of Edgeworth will be
correct in the general situation discussed at present. As we shall
demonstrate, in the remainder of this paper, the result is indeed correct.
As the number of participants in the market tends to infinity (the precise
meaning of this rather elusive notion will be clarified in section 3.),
the core will, in the 1limit, consist only of competitive allocations. A
specific statement of this result is gl?en‘in Theorem 4,

One of the ways of interpreting.this résult is that it describes a

type of stability for the competitive equilibrium. If there are
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sufficiently many participants in the market, then any deviation from
the competitive equilibrium will result in same group of consumers re-
fusing t» trade. This approach to the stability problem is, of course,
quite different from that described by Arrow and Hurwicz [2] and sub-

sequent writers.

2. A Characterization of the Core.

In this section we shall consider the general market with a finite
number of participants. As we have mentloned before, any competitive
allocation will be in the core, so that in general the core will not be
empty. The core will almost always contain some allocations which are
not competitive. The problem, to which we shall turn our attention, is
to characterize those allocations which are actually in the core.

Let xl y ees xN be an allocation of the total market supply

e
Z xY = I1(X) ,
J=1
J th
with x¥ the commodity bundle assigned to the J consumer and strictly

preferred by the Jth consumer to the zero commodity bundle. In order
to decide whethar this allocation is in the core we shall construct a
function g(S,z) 1in terms of wiich the answer will be given. This
function will be based on the specific allocation in question; for a
different allocation the corresponding function would be defined in a
similar fashion, but would assume diffcerent values. A more precise but
more cumbersome notation would perhaps indicate the specific dependence

of the function g(S,z) upon the allocation xl, oo xN.



The . .rguments of g are as follows: S will range over all possi-
ble subsets of consumers, including the set of all consumers in the
market. The second argument 2z will range over all commodity bundles,
that is all m-vectors with non-negative components. For a specific
commodity bundle 2z and a subset of consumers S, we consider all
possible allocations of z among the consumers in S, i.e., z = [: yj.
For any such allocation we consider the possible non-negative valﬂ:§ of
A such that %i % xJ, for all JeS. The largest possible value of A,

considering all allocations of 2z, is defined to be g(S,z). More

formally

J
g(8,2z) = max 7{%\- > xd with Y y‘j = z},
A>0 J Jes

or zero if no A > 0 will do. The fact that we have a maximum rather
than a supremum, follows from the continuity assumption.
The relevance of this function to the question of whether xl, cee xN

is in the core should be clear from the following theorem.

3 N
Theorem 1. (xl, ...,xN) with ExJ = I(X) 1is in the core, if
1

and only if g(S,I(S)) <1 for all sets of consumers.

If xl, ess xN does constitute an allocation in the core, then

clearly g(S,I(S)) <1 for all S. If this were not correct, then

there would exist a X\ > 1 and an allocation of I(S); say yJ with
3 2y 3

I v/ =1(s), such that “=>=x° forall J in S. Nowy J>‘.(o,o, ces , 0)

Jes

J
for otherwise x° would be indifferent to (0,0, «ev , 0) and would
J
be blocked by I’j. But then y'j is strictly preferred to yx— . when

A~ >1, and the coalition S will block the allocation.

8



On the other hand if g(S,I(S)) <1 for all S, then xl, cee &

must be in the core. If not,there will exist an allocation I(S)= zy‘j
with yj 5 xJ for all J in S. Using our assumption as to the 98
continuity of preferences we see that %g»ﬁ x'j for some M\ strictly
larger than 1, and this demonstrates the theorem.

For any set S, g(S,z) can be viewed as a social utility function
of the set S for commodity bundles 2z, in which bundles are valued by
the coalition according to the value of the bundle in blocking the
underlying trade. Of course, the utilities are specifically dependent
upon the underlying allocation xl, coe xN; if the allocation were
different, the valuation of commodity dbundles would be different. The

interpretation of 2z as & utility function will be somewhat more

convincing after the following result is demonstrated.

Lemma 1. For each S, g(S,z) 1is homogeneous. of degree one, and

concave.

The fact that g(S,tz) = tg(S,z) is immediate from the definition
of g. In order to demonstrate that g 1is concave we shall first show

that

g(s,z + z) 2 g(S,z) + S(S:;) ’
where z and z are any commodity bundles. The theorem is obviously
correct if either g(S,z) or g(S,z) is zero. Let us therefore assume
that both A = g(S,z) and X = g(S,z) are positive. fhen we can find

L y‘j:z and £§J=;, so that
Jes JeS



J =J
1}\-_>_xJ and -&-ZX‘jl for J in S .
J J
But then
z+z= (yd + 7 )
JeS
and

;:vj_r"'::j \ J x ‘ 3
 + x x+’2(zx_>')\+x(‘i;xj'>3>-x ’

Therefore g(S,z + z) > Mo A,

g(S,z) 1is concave follows by combining this result with the homogeneity

as we wanted to show. The fact that

of 2z 1in the obvious way.

In the case in which S 1is the entire set of consumers, and in the
more general situation in which production is included, the function
g(8,z) was introduced by Debreu [5], with however, a slightly different
emphasis than that given here. Debreu defines the "coefficlent of

resource allocation” to be

~ 1
P = X, I(X)) *

N

N) with | xd = I(X) 1is Pareto optimum then
1

If the allocation (xl, vee 4 X
p = 1. On the other hand if the allocation is not Pareto optimum then p will

be less than unity. More specifically if the resources pI(X), rather

than I(X) are used, an allocation can be found which provides the Jth

consumer with a commodity bundle of equal utility value as xJ. In this

sense the quantity 1 - p 1is a measure of the economic loss associated

1
with the allocation (X, «.. , xN)

10



In the analysis of the core, our attention will also be focused on
g(s,z) as a function of the set S. Let S be an arbitrary set of
consumers. The next result describes the relationship between g(S,z)

and g(Sl,z), cee g(Sn,z) with S,, ... , S & partition of the set S.

Lemma 2. Let S ©be the union of disjoint sets Sl, cee Sn' Then

g(s,z) = Max Min(g(Sl,zl), cen g(Sn,zn)).

1 n
27 4+ s + 2 =232

For any zi there will be commodity bundles yiJ such that

i3
E yij = Zi and ——y_-i_ 2 x‘j
Jes, g(s;,2z7)
for jeSi .
1 n L 1J
Therefore if 2z~ + *** + 2z =12, then z = y with
i=1 JeS
i
13
1 . ne. 2 xj *
Min(S(sl:z )y eee s S(Sn:z )) 3

It follows that

g(5,2) 2 Min(g(s},2"), ... , &(5,2") .

Since this is correct for any zl 400 4 0 z, we see that

g(s,z) > Max Min(g(sl,zl), cee g(Sn,zn)).

11



The corresponding inequality, running in the other direction, is

demonstrated as follows. By the definition of g(S,z) we may write

n

rogi yt 3
z= [ Yy with > x
1=1 Je8, e(5,2) 3
if Jes, .
Define z' = [ y'9, sothat 21+ ...+ 2" =2 It follows that

1 Jes
E(Si,z ) > g(s,z), and trerefore

g(s,z2) SMin(S(sl}zl): see S(Sn)zn)) ’

for this particular decomposition of 2z into zl, cee zn. This demon-
strates the lemma.
Before proceeding to an example let us derive two additional results
which depend on specific assumptions as to the structure of the market.
Let us consider two subsets of consumers, say A and B. The
number of consumers in each of these sets is assumed to be the same. In
addition we shall assume that for each consumer in A there is a counter-
part in B, and vice versa, with precisely the same tastes, and with
precisely the same commodity bundle in the allocation used to define g.
If these properties are fulfilled we shall call the sets A and B

isomorphic. Clearly if A and B are isomorphic then g(A,z) s g(B,z).

Lemma 3. Let S be a subset of the consumers, which is the union

of a disjoint collection of isomorphic subsets Sl’ N Sn' Then
g(s,,2)

g(S,Z) = —n_ .

12



If the functions g(Si,z) are denoted by g(z), then from the

result given above we have

g(s,z) = ; Max n Min(g(zl), eee , g8(2ZM) .
25+ s 4z =2

Since g(z) 1is concave, we have

1,..,.,0 n(2d) p
*‘G):g(z n z)ZJ);lLE— zMEn(g(z)),

and therefore
z
8(8,2) < s(;)-
J

The reverse inequality is trivially obtained by taking all of the =z

the same.

Lemma 4. ILet S = (1, 2, ... , n} be a subset of consumers, all
of whose members have identical preferences., Assume that the commodity

3

bundles underlying the definition of g, may be ranked xl_<_ xesx <yeee, < x"

according to the common preference ranking. Then if Sk ={1, 2, ... , k},

with k < n, we have

k
g(S,é) <els, =

z) .

In order to demonstrate this result, we introduce an artificial
market consisting of nk consumers, all of whose preferences are
identical. The consumers in this market will be labeled (i,3) with i

running rom 1 to n and with J from 1 to k. Let E(A,z) be

13



defined for this market on the basis of the allocation which gives
the commodity bundle xi to the consumer labeled (i,J). The entire
set of consumers T in this new market, consists of a k-fold repetition

of the original consumers in the set S. For this reason the previous

lemma mey be applied to deduce that

'_l

%'(T)z) = k g(syz) .

On the other hand the set T may be decomposed into the disjoint

union of n sets Tl’ cot Tn as follows. Let

ro= (L), @1, ., (1)

H
[}

A ((1,2) , (2,2) , vee (k,2))

T, - (10, e, ..., (k,k))
and
T ((x+1,1) , (k1,2), ..., (k+l,k))
T = (1), (0,2, ey (0K) .

The first k of these sets are obviously isomorphic and the common

value of ®(T,,z) for Jj=1, 2, ... , k will be identical with g(SK,z).

3e
Consider the set T all of whose members have been allocated the

+ +
same commodity bundle xk l. Since xk 1 > xk >t 2 xl, it follows

k+1’

directly from the definition that E( ) < §(Tj,z) for J=1, 2, ... ,k,

Tk+l’z

14



80 that @(Tk+l,z) < g(sk,z). A similar argument may be applied to any
of the sets TJ for Jj=k+1, ... , n, and we therefore come to the

conclusion that

E(Tj,z) < g(Sk,z) for 3 =1, 2, «0s , N,

This remark permits us to make the appropriate evaluation of

g(T,z). Applying lemma 2, we have

E(T; z)

r:t' S(S,Z)

~ 1
= Max Min(g(Tl,z) ) eee E(Tn,zn))

IA
5
%

1
Min(g(s,,2) , ... 5 &(S,,2")

1
g(S,,2) + ++0 + g(5,,2")

n

IA
5
>

zl+ ter 4 2 =2

IN

s(sk,-rz;) ,

because of the concavity of the g 'functions. Using the fact that g
is homogeneous of degree one, the lemma is demonstrated.

This series of lemmas describes the formal properties of the g
functions which will be used in the discussion of the core for large
markets. Thesc properties are somewhat abstract and it may be useful to
illustrate them by means of an example.

Let us consider a market in which all of the consumers have identical

preferences given by a utility function U(x,, ... , xm) with the

l’
following properties

15



1) U(x) 1is homogenecus of degree one.

2) U 1is concave, positive and increasing in each coordinate.

3) U((I(X)) =1, where I(X) is the vector of total market

holdings.

Properties 2 and 3 are, of course, quite mild. On the other hand
assumption one is quite strong. It should be remarked that we are not
assuming that the initial holdings are also identical for the various
consumers. If that were correct the core would consist of the competi-
tive trade alone, that is no trade at all.

Our purpose is to construct the functions g(S,z) based on a
particular allocation xl, cee xN of the total supply, and then to
determine the core by means of Theorem 1.

Let us begin with the case in which S refers to a single consumer,
who receives the commodity bundle xJ as his share in the allocation
of the total market supply I. G({Jj},z) 1is, by definition, the largest
value of ) such that U(%)zljhch, or (using the homogeneity of the

U(z)

utility functions) =2 > U(x!). It follows that

U(z)
J) )

S([J]’Z) =

(=]

(x

Now let us consider an arbitrary set of consumers S. Applying

lemma 2 we see that

J
g(S,z) = Max Min (§£53;> .
jESzJ=z Jes \U(x*)

1€



It is easy to see that

a(s,2) = —2E_
JESU(X )
For if we take
3z uxd)
2= J
sEs V(%)

we obtain

g(S,z) > Min <__H£El_.£> = —_!Lfl___ s

- J J
Jes JES U(x JES U(xY)
and on the other hand
3 3 uGe)) v 2 )
win 92 win (__J_> < e
jes u(xd)  jes  \U(xY)/ T 48 4 V)

i),
555 u(xd)

using convexity and homogeniety. Therefore

and our statement is verified.

The simple form for the g functions in this example permits us
to describe the allocations in the core as being those allocations for
which

u(xd) > u(a(s)) ,
JeS

for all subsets of consumers S. If we assume a version of strict

concavity for the utility functions, appropriate to homogeneous functions,

17



then the description of the core tskes an even simpler form. Specifi-

cally let us assume that
U (ozx + (l-a)y) > al(x) + (1-0) U(Y) ,

when 0<a@<1l, and if y and x are not proportional. This, of

course, implies that
n 1 n 1
u(zpix)>zpi vt
1 1

if all Py > 0 and if the xi are not all proportional. In our case,

if the allocation xl, ces xN is in the core then we must have

o 3
EU(X)EU(EX) »
1

and therefore

N
§u<x3) T
N 3U(N > '

Under the assumption of strict concavity this implies that all of the
J

allocations x“ are proportional, and therefore proportional to I(X),
the vector of total market supply.

The only allocations in the core are therefore those allocations
x‘j = aJ I(X), where oz'j are non-negative numbers which sum to unity.
aj may be thought of as the share of the jth consumer in the market.
The conditions given above for an allocation to be in the core may be
translated quite simply into conditions on the shares to each consumer.

We are to have

u(x?) > u(i(s) .
JeS

18



Since x’ = o I(X), and U(I(X)) = 1 this is equivalent to

L o >uis) .
JesS

In other words, assuming that the utility of the total market supply is
taken to be unity, then the share of the market allocated to any set of
consumers must not be less that the utility of their combined initial
holdings. The similarity of this result, for the special market con-
sidered here, to the definition of the core in the case of transferable
utility should be clear. For this example, the shares of the market are

measures of utility and are transferable.

3. The Core for Large Markets

We are now prepared to turn our attention to the question of whether
the core tends to the collection of competitive Allocations, as the size
of the market increases. As was mentioned in the introduction this
result, or versions of it, have been cited frequently in the economic
literature. If the statement however 1s examined with some degree of
care, it will be seen that its meaning is not at all clear. There are
several possivle interpretations that can be associated with this statement.
First of all, it is possible that one intends to measure in some absolute
sense (area, volume, etc.) the size of the cet of allocations constituting
the core or the contract surface, and to show that this measure of size
is small if the number of consumers in the market is large, eventually
tending to zero. This would probably be the most appropriate mathematical
restatement of the intuitive idea, if the measure of size were plausible

from an economic point of view. It seems, however, to be quite difficult

19



to produce such a measure; Edgeworth does not work with this technique,
nor do any of the subsequent writers on the subject.

As another possible mathematical statement of the problem we can
attempt to demonstrate that as additional participants are added to the
market, the core for the larger number of participants will actually be
a subset (that is, directly contained in) the core for the smaller num-
ber of participants., It takes very little thought, however, to realize
that this is a meaningless statement. If, £4 we are assuming, there are
m commodities and n consumers, the core will consist of a subset of
points in mn dimensional space, and there is no immediate way to
compare such subsets on the basis of inclusion of sets for different
values of n.

There is a modification of this approach which consists of focusing
our attention on a particular collection of consumers, with their respec-
tive vectors of initial holdings Il, e ", We might then consider
all markets obtained by the addition of consumers with additional initial
holdings to this particular collection of consumers, and focus our
attention on thsse commodity bundles xl, ces X" which will be part
of the larger core for all of these augmented markets. In this way we
are comparing the cores for various markets by means of the possible
allocations earmarked for a specific set of consumers. As we shall see
in a subsequent section as part of a more general result, such an allo-
cation xl, cee x" will indeed turn out to be a competitive allocation
of the resources of this group of consumers. I find this type of approach
somevwhat troubling, however, in as much as it forces the members of this

particular group of consumers to become fully dependent upon their own

resources.
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This type of approach could be used without considering all markets
containing the specific set of consumers. We might, for example arrange
the consumers in order, as consumer number one, number two, three, etc.,
and then designate by Sn the colliection of the first n consumers.

We would then compute the core for this market based on the total supply
held by the first n consumers and then examine the point set in mN
dimensions which describes those allocations in the core specifically
earmarked for some definite set of N consumers. The relevant questions
to be asked would be first of all whether this part of the core that we
are studying becomes smaller as Sn increases, and a question as to the
limiting set of points. The answer to the first question, however, is
definitely no. The parts of the cores that we are studying, even though
they are sets of points in a spece of equal dimension, bear very little
relationship to each other for different values of n. For an individual
consumer, considered as a market by himself, the core will consist only
of his initial holdings. If however, this consumer forms part of a
larger market, it is most probable that none of the allocertions in the
core for the larger market will assign to this consumer a commodity
bundle identical to his initial holdings.

All of the difficulties in interpretation suggested above are
forced upon us by the need to compare markets with increasingly larger
numbers of consumers, that ig,to compare fundamentally incommensurable
objects. As I see it, there are basically two ways out of these diffi-
culties. One is to permit the sequence of markets to increase in a
sufficiently regular way so that comparisons are possible, and the other

is to consider the ideal market with an infinite number of consumers.
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In the remainder of this section we shall examine the first approach
which i35 very similer to that taken by Edgeworth.

Let us consider then a collection of & finite number of types of
consumers, type 1, type 2, ... , type N. All consumers of type Jj, if
we refer to several of them, will be assumed to have identical preferences
and identical vectors of initial holdings IJ. We shall then consider
markets consisting of n consumers of type one, n of type two, and
generally n consumers of every type. A typical consumer in this
market will be described by a pair of indices (i,Jj) where J indicates
the type of the consumer (j=1,2, ... , N) and 1=1,2, ..., n.

In such a market the allocations in the core may very well assign
different commodity bundles to consumers of the same type. For the
remainder of this section, however, we shall restrict our attention to
those alliocations in the core which assign the same commodity bundle to
all consumers of the same type. There always will be such allocations
in the core since the competitive allocation has this property.

In order to discuss such an allocation we need only indicate the

commodity bundle x'j

assigned to a typical consumer of type J. Since
the commodity bundles in the core are meant to be an allocation of the

total market supply, it follows that

regardless of the value of n. All allocations in the core, which are
of the restricted type considered here, may therefore be described by

a set of N commodity vectors xl, cee xN satisfying



The sets of such allocations in the core, which we shall denote by Cn,
does of course vary with n, the number of repetitions of each basic

type of consumer, as the following theorem demonstrates.
Theorem 2. Under the assumptions given above

C 1 €€, -

The allocations that we are considering in the market with n

repetitions may “e described as

type
repetition 1 2 cos N
1 xl x2 N xN
2 xl x2 e xN
1 2 N
n x x e e @ x

and that in the market with n + 1 repetitions by an additional line at
the bottom. The quantities g(S,I(S)), based on this allocation, will
be identical for the two markets if S 1is a set whose members are among
the first nN consumers. The theorem therefore follows immediately
from Theorem 1.

That part of the core consisting of those allocations which assign
identical commoditles to identical consumers, will therefore become smaller
as the number of repetitions increases. The limiting set as n tends

to infinity wil. consist of those allocations in the core for all finite n.
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As we have seen, any competitive allocation will be in the core for all n.
The main result of this section will be that the only allocations of the
type described above, which are in the core for all n, will be
competitive allocations.

Let xl, vee xN

N N
with E xJ = 2 Ij, suitably repeated, be in the
1 1

core for all finite n. If the functions g are based upon this

allocation, then we must have

S(S:I(S)) < 1,

where S 1s aay set consisting of kl consumers of type one, k, con-

2

sumers of type two, and generally k consumers of type J with

J

J=1,2, «.. , N. Let S be partitioned into subsets S vee 3 S
{

17

consumers of type Jj. Then since

N’
with S consisting of the k

J J
g(s,1(5)) = _Max  Min (g(s,,2%)) ,
{ z¥=I(8)
we have
Max Min(g(sj,zj)) <1.

3 P-1(s)
1

But SJ consists of k isomorphic consumers (see the discussion

J
immediately preceding lemma 3), so that

J
S(SJ)ZJ) = G([J]: }z(__j) ’

with (j) referring to a typical consumer of type .j. We also have

N .
1(s) = ¥ kJIJ ,
J=1



80 that

(In this equation and in the remainder of this section we shall employ
the more compact notation g 3? for the g function based on a typical

consumer of type J.) If we replace z‘j by thJ, we obtain

Max Min (g,(td)) <1 .

kJ(tJ-I‘j)=O J

J

=M=

This inequality is to hold for any set of integers (kl, Kyy oon s kN).

N
The constraining equality de (t'j-I'j) = 0, may of course be written as
1

k
T{J'(t'IJ)=O,

=)=

N k
where Kk = E k,j’ and this suggests that the ratios fl may be replaced
1

by any set of positive numbers p ,j; in other words that

Max Min (g‘j(t'j))

N
J_1dy_
§oj(t 1v)=0

shall be less than or equal to one, whenever P > 0. This latter
inequality, which shall be very important for us, is indeed correct.
In order to see this let Pyr ce s Py be positive numbers, and

let M be an integer eventually tending to infinity. We define

kj =1+ [ij], where [MQJ] is the symbol for the greatest integer
k

less than or equal to MOJ Then -41>°J, and as M - =, Tﬁi—'pj‘
1

Now let t°, « . , tN be any collection of N commodity bundles

N
satisfying E o (tJ-IJ) = 0. We wish to show that Min g
1l

(£Y) <1.
y 9
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First of all let us notice that

’

~ p,M oM
I - EJ— 3+ (1~ Ei-) 19
J J

k. (39-13) = 0. Tt therefore follows from our

satisfies the equation 3

-]

previous result that

M M
Min (g EJLtJ+(l-E-J-)Ib<l.
3 U\ ks =

However since each g 3 is concave this implies that

M M
M?j.n(% gj(t‘j) + (1- rf—(ﬂ—) gJ(I‘j;) <1l.

Now let M tend to =, and we obtain

Min (g,(tY)) <1,

3 J

N
for any commodity bundles satisfying E pj(t'j-I‘j) = 0,
1
One more point is in order before we summarize this part of the
discussion. If all of the numbers Py? +++ » Py B8re the same, our

inequality becomes
Mex  Min (g,(t7) < 1.

N N
r td=x 14
11

It is a simple matter to see, however, that the left hand side must
actually be equal to one. For if we let S represent a set of consumers
consisting of precisely one of each type, then the left{ hand side is the

same as

g(s, E IJ) .
1

2€



N N 3 3

Since E x'j = E I‘j and of course x° > xY, we may conclude directly
1 1

J
from the definition of the g functisn that

.
gs, Y1) >1,
1
and combining this with the previous inequality we obtain

Max Min(g,(t9)) = 1,
N 3 23y 3
L p,(tY-1v)=0
14

vwhen all of the pJ are the same.
Before continuing with the argument, let us summarize these results

in the following theorem.

1 N N J N J
Theorem 3. If X, ... , x with } x’ = IY 1is in the core
1 1

for every finite n, then

Max Min(g, (t9)) <1,

N 3 1y J
{pj(t IY)=0

are the same.

°3
Let us now turr. to the argument which will show us that xl, e xN

and is actually equal to 1, when all of the

is actually a cumpetitive allocation.

Our first step is to determine the set of prices =« ., ... 1
1 ? 'm

which will eventually turn out to be the competitive prices for the
N
allocation xl, ees » X ., We consider a convex set T, defined to be

N
the set of all commodity bundles ¢t = | t3 with Min gJ(tJ) > 1.
N 1 3

Theorem 3 tells us that E:IJ is not in T, and we may therefore use
1

the separating hyperplane theorem to ogtain constants nl, P
(not all zero) such that (=m,t) > (n, z IJ), for all t in T. Since
1

m

the coordinates of t may be selected as being arbitrarily large, we see
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that all =« 3 >0, axr;d since the =« 3 are not all zero, we may normalize
the prices so that | ny = 1. There may, of course, be more than one
such separating hyperplane, and we shall denote by TT_ the convex set
of all hyperplanes which separate T from E I'J'I normalized by the
condition ):n = 1.

If ¢t is any coomodity bundle such that t = %t‘j with
Min gJ(tJ) >1, then (L+¢€)t 18 in T, and we may therefore conclude
that (x,%) > (x, {; 1Y)

It is a simplt matter to see that xJ will actually maximize the
preferences of the Jth consumer at the price's =x. For if 1:J is a
commodity bundle with t° > x3 and (n,t)) < (1,x9), then by the
hypothegis of ' ' continuity of the preferences, there will be a commodity
bundle IY with T > x% and (u,"E'J) < (n,x‘j), unless (n,x'j) = 0.

k 3

But then t =k§ x + tY, will satisfy
J

N
(n,t) 2 : (’UIJ) ’
1

or

N
b (1, + (¥ > T (4,
J

k=1

which is a contradiction, unless (n,x‘j) = Qe As we shall see later,
this exceptional case cannot occur.
In order to finish the proof that the x'j represent a competitive

allocation, we need only show that

(ﬂ;xj) < (";IJ) ’
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in other words that each consumer spends no more than the value of his
initial holdings at the stated set of prices. This collection of N
inequalities will not be valid for all prices Ty vee L. in the
convex set 11—; it will however be valid for at least one such set of
prices, and this is sufficient for our purpose.

The proof of this result will proceed in a somewhat indirect fashion.
We shall, first of all, demonstrate that for every collection of non-
there will be at least one set of

negative numbers B 82, eee 5 O

1’ N’N
prices n in ], such that (=, Zl:SJ (I'ja- x'j)) > 0. To see this,

let us appeal to Theorem 3, with pJ =1 - ;ﬁ-. M will be a positive
nunber, eventually tending to infinity. For every value of M, however,

we have

Min g
J

S <1,

1 N &, g
for all t7, ... , t with p,tY =) p,I¥. Let us define the convex
C A

set 'I‘p to be the collection of all t, such that
N 3
t = t
ks

with

(tJ) > Max Min g (zJ) .

) pJ(ZJ-IJ)=0 J

Min g

3 9

J

N
obviously o) IJ is not in this convex set, and we may therefore find
T

prices nl(p), cer ﬂm(p) such that

(n(p)yt) > ), p

3
v

)=

(ﬂ(O),IJ) , for all t in To.
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Again these prices will be non-negative and may be normelized so that

their sum is one. Moreover, we may also conclude that
: )
(n(p),t) 2§0J (n(p),1¥) ,

N
for any t =¥ thJ with
1l

(t'j‘) > Max Min g (zJ) .
5 pJ‘(ZJ-IJ)=0

Min g
3 J
On the other hand let t be any element of the set T previously

detined, 50 thet ¢ - ):tJ with Min g,(t) > 1. It follows that

3 J
Epj() with
3 g,(td)
Min g, (&) = Min e >1,
39\ Py T

glnce the numbers p 3 are less than or equal to one. 1In other words

if t is in T, 1t will certainly be in 'I'p and we will have

z

n(p),t) § (n(p),19) .

Now let M »» , so that the numbers p +tend to one. Since the
n(p) are all in some compact set it follows that there will be a 1limit

point for the =xn(p)'s, say =, and that

(m,t) > (ﬂ,I‘j) , for any ¢t in T.

= g ]

In other words any limit point for the n(g)'s will be a set of prices
in | ! , the set of separating hyperplanes for T.

We wish to show that N

Fed (n,10- x9) >0,
T

392



N
for any such = that appears as a limit of the x(a). Consider z:prJ_
1

Since

Min g

(xd) = 1> Max Min g, (t9) ,
J J - J

(tJ-IJ)=O J

= ™M=

°3
we see immediately that

o]

)=

N 3
5 (10),x)) 2 Loy (x(p), 1Y)
1l

or

) (x(p),19- x¥) <0 .

]
—
]
=l.”

N3 s I3
But since E(I-x)=0, we have Eﬁj(n(p),I-x)‘:O. If we
1 1
let p tend to one, thereby obtaining a set of prices in -rT} we see
that

Sj(n, IJ- xJ) >0 .

1=

With this result in mind, it is quite simple to show that there
will be at least one set of prices n in -TT; such that (n,IJ- xJ) >0
for all J, and this will demonstate that x‘j is indeed a competitive
allocation. We shall use the following simple lemma.

Lemma 5. Let A be a closed convex cone in m-dimensional space
and 11- a closed, bounded convex set, also in m-dimensional space.
Assume that for every point a in A, there exists at least one =
in TT° with (m,a) > O. Then there will be a n in || such that
(r,a) >0 for all a in A.

Assume that the conclusion of the theorem is not correct. Then if

At represents the dual cone to A, that is the set of ¢ such that

31



(t,a) >0 for all a in A, e see that A+ and Tr will necessarily
be disjoint. Since the two sets are disjoint and closed, and one is
bounded, it follows that we may find Cys eee s Cpy not all zero and
b >4, with

(t,e) >b for all t in A",

and (m,c) <d for all n in [|. Since A" 1s a cone, containing
the origin, it follows that b <0 , and therefore d < 0. But on the
other hand we must have (t,e) >0 for all t in A". For if there
were &ty in A" witn (to,c) < 0, then since AV oisa core, At
would also be in A+, and by taking A\ sufficiently large we would not
have (t,c) >b for all tin A'. Since (t,c) >0 forall t in A,
¢ must be in A. We have therefore constructed a point ¢ in A, such
that (1,¢) <O for all n in 1|, and this contradicts the assumptions
of the lemma.

In the application of the lemma to our problem, we define A to
be the convex cane consisting of all points of the form E‘GJ(IJ- xJ),
with 53 >0, and 17— the set of separating hyperplanesldefined before.
It follows from lemma 5, that there is at least one n in -rT- such
that N
ESJ (n,I'j- x'j) >0,
1

for all 8J >0, and this certainly implies that (n,IJ- xj) >0 for
all J. This completes the proof that the allocation xl, cee xN is
a competitive equilibrium. We may also clear up the technical point of

the last argument as to whether (n,x‘j) = 0. From what we have Jjust
J)

done we have (m,x%) = (ﬂ,I'j),‘ and if we assume that all of the components

of I are strictly positive, it follows that (n,x‘j) > 0,
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It is perhaps worthwhile to point out the role played in the above
argument by the increasing number of consumers in the market. The
existence of prices = such that the commodity bundles xJ maximize
preferences at these prices is correct even for markets of finite size
and depends merely on the observation that an allocation in the core is
certainly Pareto optimal. It then follows from theorems of Arrow and
Debreu [1,6] which state that any Pareto optimum allocation of social
resources may be achieved by means of fixed prices. The important point,
however, is that,in general, redistribution of income is necessary prior to
maximazation at the fixed set of prices. In other words it will gener-
ally not be true that

(n,xj- IJ) <0,

for an arbitrary Pareto optimum allocation xJ. In fact, the initial

holdings of the various consumers, as distinct from the total market
supply, never enter the discussion of Pareto optimality at all. It is
only by means of concepts such as the contract surface or the core that
the holdings of individual consumers and groups of consume.'s become
relevant.

On the other hand if we do not let the number of consumers become
infinite, the core will generally contain allocations other than competi-
tive ones. In a technical sense the passage to the limit is similar to
a process of differentiation. It is only by means of the device of an
infinite number of consumers that we were able to show that the Pareto
optimum prices (or more specifically at least one set of Pareto optimum

prices), would in addition satisfy the inequalities
(ﬂ,xj- IJ) <o0.
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Let us summarize the main result of this section as follows.

Theorem 4, Consider a market with a finite number of types of
consumers, all consumers of the same type having identical tastes and
initial holdings. Let there be an infinite number of consumers of each

1 N Dod B
type. Consider an allocation x, ... , X with Ex =EI , such
1 1

that every consumer of type J receives the commodity bundle xJ. If
this allocation cannot be improved upon by any finite collection of
consumers, on the basis of their own initial holdings, then it is a

competitive equilibrium.

4, The Case of Different Allocations For Consumers of the Same Type.

The result of the previous section can be understood in two possible

ways. One interpretation is that we are considering a sequence of markets

composed of consumers of the same types, and such that the numbers of
repetitions of each basic type are increasing in a regular fashion. An
alternative interpretation, which was stressed in a statement of Theorem
is that the market consists of an infinite number of consumers, and that
no passage to the limit is required. Mathematically the two interpre-
tations are identical since we considered only those allocations which
assign the same commodity bundle to consumers of the same type. 1In the
present section we would like to consider the somewhat more general case
in which different commodity bundles may be assigned to consumers of the
same type, and it will be more convenient for us to favor the second
interpretation.

We shall assume, as before, that the market consists of a finite

number of types of consumer, but now with an infinite number of each type.
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The commodity bundle assigned to the ith consumer of type J will be
denoted by xiJ. Our purpose will be to show that if allocations of this
sort are in the core, then of necessity all consumers of the same type
receive the same commodity bundle, and that the assignment is a competi-
tive equilibrium,

The concept of the core requires that we consider allocations of
the total market supply, which is of course infinite, if we adopt the
interpretation of an infinite number of consumers. The condition that
we shall impose on the allocations to be considered in this section is that

1m(§) %xid-nff I‘?-O.
n sw\i=1 j=1 J=1

It should be clear that a condition of this sort is necessary, rather

than the weaker type of condition that

For if only the latter conditiorn were to be assumed,no allocation

ould even be Pareto optimal; an improvement could always be found merely
by increasing the value of the bundle assigned to a specific consumer,
while leaving the remaining consumers unchanged.

In order tc obtain the result that all consumers of the same type
receive the same commodity bundle, I have found it necessary to impose
two additional requirements on the preferences of the various consumers.

1. A version of strict convexity to the effect that if x >y and
x and y are different commodity bundles, then ox + (l-a) y >y if

0<<a<1l.
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2. A condition which essentially says that the indifference surfaces
of the various consumers do not pass through the coordinate planes. More
specifically we assume that any commodity bundle which contains a zero
level for any commodity will be indifferent to the commodity bundle
(O «¢es , 0). This is an excessively strong assumption which it would
be desirable to eliminate.

The argument of this section will sgain be based on & collection of
functions g J(z), but they will of necessity be different from the
functions of the previous section. Consider sets S consisting of n
individuals of type J, and the associated g functions g(S,z). As
S varies these functions will, for any fixed 2z, be bounded from above

since xiJ will certainly be preferred to IJ. Let

83(2) = sup g(s,2)

as S varies over all sets of n individuals of type j. It is a simple matter

to show,by means of lemma 4, that ngg(Z) is decreasing in n, and

will therefore approach a limit as n —»=. We define gj(z) = 1im ngg(z).
n -

As we see from the following theorem, these functions will play

a role somewhat similar to the g functions of the previous section.

J

Theorem 5. Let xi‘1 be in the core and satisfy

Then
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There is one difference between this theorem and theorem 3, That
is, the present theorem refers only to the case where all p 3 = 1, There
is a corresponding result for the p J's different from each other, but
since we shall not use it in this section, it has been left out of the
statement of theorem 5.

The proof of theorem 5 is quite direct. We shall first demonstrate

that if
N NJ
EtJ=EI, then Min g () <1 .
I T gy 9

We know from theorem 1, that if S, consists of n consumers of type

J
J, then

Min g(s,, ntd) <1,
y 9 -

and therefore

Min ng" (t‘j) <1l.
g 40"

Letting n tend to infinity we obtain the desired inequality.

Now let us turn our attention to the inequality

Max Min gJ(tJ) >1.
Sogqpd !
tt'=51
n N 13 n 3
Since lim § )Y xV-n [ IY=0, 1t follows that
m e i=1 j=1 =1

N : N .
L L<@anl ¥

i=1 j=1 J=1
for each commodity, when n 1is sufficiently large. (We are using the

assumption that there is a positive supply of every commodity.)
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If S denotes the set consisting of the first n consumers of ~ach

type it follows that
N
J 1
g(s, ng 1) 2 STiFeT
and therefore

Jy > Lo
Max Min ng(SJ,t B il
J

std=x1

with SJ the set of the first n consumers of type J. Let ?J(n)

maximize, so that

Min ngj (F(n)) > ¢

Now let T be a limit point of ?J(n). Let us assume for the moment
that Ed has no components equal to zero. Then we may find a sequence
of n's, tending to infinity such that Ed(n) < (1+e) T for all 3

and for each commodity in the vector. For such n's we have

- 1
Min ngn (tj) >
g 9 = (+e)®

And letting n tend to infinity we obtain
=3 1
Mjn gJ(t ) 3-(—;;5 .
If we then let € tend to zero (E'J does not depend on €), the
conclusion of theorem 5 is obtained.

We have only to clear up the point that all of the components of
fd are different from zero. If this were not the case then we would
nave Y equivalent to (0, ... , 0), and by the assumption of
continuity it would follow that

at(n) <17,
J
»



for any specific a, for a sequence of n's tending to infinity. But
if n 1is large

T =
ng(s,, T() 2 7
and therefore we may write
- ooy
nt'(n) = § v
i=1
with

(1+€) yi > xHd > .
J J

It follows from the convexity of the preferences that

(1+¢) T(n) > 3

2

which is contradiction if a > (l+e). This concludes the proof of
theorem 5.

The specific values of ?J obtained in the proof of this theorem
will be of some importance for us. In fact we will show that EJ = x1J

for all 1 and j. First of all let us remark that since Min (g J(EJ)) -1,
- J
we have ngg (T9) >1 for all n and J. We wish to show that, in fact,

ng?(%j) =1 for all n and J. Suppose that g}(gj) > 1. Then there
j(aEJ) > 1. Let us define z= X T* + i?.

kA
It follows that we may find a set S, consisting of precisely one

will be an 0 < <1l such that g

consumer of each type, for which

g(s,z) > l-e .
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But

N
L =2+ (10 ¥
=1

and therefore
¥ =
gls, L 19) > als,z) + (1-a) &ls,t’)
1
> l-¢ + (1-q) g(s,td) .

However, since T':J has no components equal to zero, we may find & A > 0
such that tJ > x§ I'j for all components. This implies that
g(s,tj) > (s, : ), and combining this inequality with the previous

1
one we obtain

N
(1-» (1-0)) &(s, [ 19) > 1-¢ .
T

If we take ¢ sufficiently small this would provide us with a set S
consisting of n consumers of each type for which g(S, DIJ) > 1,
which violates the condition that xi‘j be in the core. We have therefore
verified that gi (f’j) =1 for all Jj.

It is an immediate consequence of this fact that T < xi‘j for
all 1 and Jj. But it is then an easy matter to finish tijle analysis of

this section and show that ?'j = xi'j for all 1 and Jj. We shall

demonstrate, first of all, that El ) ves ?N represents a Pareto optimum
N

allocation of the commodity bundle E IJ in a market consisting of a
J=1

gingle consumer of each type. For suppose that this were not the case.
If the assumptions of continuity and monotonicity are used, it can be
shown that there is a small positive €, and an allocation of the market

NI
supply E yY o= E IY, such that
J=1 =



Then since gﬁ (?J) = 1, 1t follows that for our €, there is

iJ, t i
a consumer of type J (with commodity bundle x J), such that e >x 3,,
J
and therefore yJ > x1J « This would provide us with 'a finite coalition
J 4 N

which blocks the underlying allocation, and therefore t, ... , t 1is
Pareto optimal.

But it is then an immediate consequence of the theorems of Arrow
and Debreu that there exists a set of prices My oeee s “m such that
t minimizes (n,x) for all x > TJ. Recall that we have already
demonstrated that ?J < x"‘1 . Byjour hypothesis of strict convexity it
follows that (m,t") Sd(n,xi‘j), with strict inequality if a single T

is different from xiJ. But we have assumed that

n N 13 N 3
lim {: [: XY = n Z: Iv=0,
n s i=1 j=1 J=1
and therefore
n N 13 N -3
iim ¥ L (x) -n}} (n,3Y) =0,
n ~»e i=1 j=1 J=1
N N
since [ £ - Y. 1 T i not identical with x19 for all 1
J=1 J=1

and J we would have a contradiction. This implies that all of the
commodity bundles assigned to a consumer of a particular type are
identical, and we may then return to the argument of the previous section

to show that they represent a competitive allocation.
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